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a b s t r a c t

Theoretical solutions have been proposed recently for various competent layerematrix systems, including
elastic, viscous and elasto-viscous materials. Furthermore, three type fold-forms of buckling fold had been
proposed. These solutions were obtained based on the most simplified, one-dimensional governing
equations. Therefore, these solutions require further validation by observing the two-dimensional folding
behaviors. This work utilizes numerical analyses to study the buckling and post-buckling behaviors of
various layerematrix systems. As a result, it was found that for competence contrast RS 10 the fold-forms
obtained by numerical simulation agree well with those theoretical solutions. Three types of fold-forms
can be generated and the resulting wavelengths are also close to the predictions. The fold evolution during
the post-buckling stage is explored up to high amplitudes, and the results indicate that the fold-forms can
remain the same or be changed from one type to another type, depending on the types of layerematrix
system, the applied strain rates, the original fold-forms at buckling, etc. The fold behaviors from buckling
to the post-buckling stage of the layerematrix systems are presented.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

For a stiff, competent layer of rock stratum embedded in
relatively softer matrix, the lateral compression of this competent
layerematrix system can induce folding of the rock stratum and
surrounding matrix, which is often referred as buckle-folding.
Research on buckle-folding can be dated to the early 1900s
(Smoluchowski, 1909). Field observations and interpretations
focused on formation, wavelength and thickness have been made
regarding the appearance of folds and mechanism (Sherwin and
Chapple, 1968; Donath and Parker, 1964; Hudleston, 1986;
Hudleston and Lan, 1993). To further explore the mechanism,
studies based on laboratorial experiments to explore evolution have
been conducted (Biot et al., 1961; Hudleston, 1973b; Fletcher, 1974;
Dubey and Cobbold, 1977; Abbassi and Mancktelow, 1990, 1992;
Mancktelow and Abbassi, 1992; Treagus and Sokoutis, 1992).
Theoretical solutions considering various material types (elastic,
viscoelastic and viscous) have accordingly been developed (Karman
and Biot, 1940; Biot, 1957, 1959, 1961; Currie et al., 1962; Ramberg,
gineering, National Taiwan
aiwan. Tel./fax: þ886 2 2364

All rights reserved.
1961, 1963, 1964; Chapple, 1968; Smith, 1975, 1977, 1979; Jeng
et al., 2001; Jeng and Huang, 2008), and the fold formation in
deformed layers are considered according to the competence
contrast between layer and matrix. Studies considered in more
sophisticated conditions have also been conducted, e.g. for single
layer systems (Chapple, 1969; Cobbold, 1975, 1976, 1977; Fletcher,
1974, 1977; Hudleston, 1973a,b; Hudleston and Stephansson, 1973;
Hudleston and Lan, 1994; Hunt et al., 1996a,b; Kocher et al., 2008;
Lan and Hudleston, 1991, 1996; Mancktelow, 1999; Mühlhaus
et al., 1994; Schmalholz and Podladchikov, 1999, 2000; Treagus,
1973; Williams et al., 1977; Zhang et al., 1996, 2000); for stresse
strain analysis (Dieterich and Carter, 1969; Hobbs, 1971; Hudleston
et al., 1996; Treagus, 1981, 1983, 1999, 2003); for bending folds
(Latham, 1985a,b); for deformation rate (Price, 1975; Johnson and
Fletcher, 1994; Mühlhaus et al., 1998, 2002a,b; Schmalholz and
Podladchikov, 2001a,b,c; Treagus, 2003); for heterogeneous defor-
mation (Passchier et al., 2005); for nonperiodic folds (Whiting and
Hunt, 1997) and a brief summary is given by Price and Cosgrove
(1990). In these studies, folding with a single wavelength, the
so-called dominant wavelength, has been recognized.

In addition to the findings of previous researches, folds with
dual wavelength or decaying amplitude were found possible, when
considering the solutions in a more general manner (Mühlhaus
et al., 1998; Jeng et al., 2001, 2002; Jeng and Huang, 2008; Hobbs
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et al., 2008). Furthermore, it is necessary to consider that the
material properties of the competent layer and the matrix may
change with the local environments e.g. temperature and pressure
conditions. These conditions can be simply expressed in elastic,
viscoelastic and viscous materials. The three types of material can
have six kinds of possible combinations for real geological condi-
tions. Two-component notations are used hereafter to indicate the
layerematrix system. For instance, the notations EeE, EeEV, EeV
represent the cases of an elastic layer respectively embedded in the
elastic, viscoelastic and viscous matrix. The solutions for six
possible models (EeE, EeEV, EeV, EVeEV, EVeV and VeV) have
been established (Biot, 1961; Currie et al., 1962; Jeng and Huang,
2008).

It was identified that the resulting waveforms depend on the
amount of compression, and could be expressed in terms of lateral
force or lateral strain in rock layer, when bucking (or folding)
occurs. The relation of the lateral compression at the moment of
buckling (3xB) and the resulting wavelength l for the six aforemen-
tioned models is conveniently summarized in Table 1 (Biot, 1961;
Currie et al., 1962; Jeng and Huang, 2008). In general, the 3x

B � l
relationship has the typical appearance as shown in the left-side of
Fig. 1. The upper curve is related to the fold-form with dual-
frequencies and the lower curve is the fold-form with single
frequency yet with decaying amplitude. The intersection of the
upper and the lower curves is the Type B fold-form, which is also
referred as fold-form at critical state (Biot, 1961; Currie et al., 1962).
These three types of fold-form are depicted in the right-side of
Fig. 1. Among these six models, EeE and VeV models are found to
be strain rate-independent and the other four models are strain
rate-dependent (Jeng and Huang, 2008). For convenience, Table 2
summarizes the response of the six models when subjected to
extreme strain rates.

In developing theoretical solutions for the six models, two-
dimensional folding phenomena are simplified as one-dimensional
governing equations (Biot, 1961; Currie et al., 1962; Hunt et al.,
1996a,b; Schmalholz and Podladchikov, 1999, 2000; Jeng and
Huang, 2008). Therefore, there is still a suspicion that the one-
dimensional governing equations yielding solutions may not be
adequate to simulate two-dimensional buckling fold-forms.
Moreover, the governing equation is the state of force (or stress)
equilibrium at the moment of buckling and thus the solutions can
only represent the fold-form at themoment of buckling. The folding
evolution throughout entire deformation history after the buckling
stage is important. Thus, it is of interest to ask what will happen
after the buckling? Can the fold-form maintain same wavelength?
Or, will thewavelength, even the type of fold-form, be changed after
the folds have been generated, during the post-buckling stage of
deformation? For the sake of convenience, the deforming process
after the fold initiation is called post-buckling stage.

Previous research indicated that numerical simulations based
on finite element method yielded reasonable fold-forms. The
resulting dominant fold-form by numerical simulation with high
competence contrast agreed with the theoretical solution (Zhang
et al., 1996, 2000; Mancktelow, 1999, 2001; Jeng et al., 2002). As
to other models (EeEV, EVeEV, EVeV, EeV), comparisons are not
completely made because some solutions have been only recently
proposed (Jeng and Huang, 2008). This research aimed at exploring
the above-mentioned questions based on two-dimensional
numerical analyses. The observations focus on: What are the types
of fold-form corresponding to different degrees of lateral
compression? This also means: can three types of fold-form really
happen in numerical simulation? How well do the resulting
wavelengths agree with the theoretical solutions as summarized in
Table 1? Are these models really rate-dependent or rate-indepen-
dent as described by the theoretical solutions? What is the



Fig. 1. Schematic illustration of the three types of fold-forms and the 3x
B� l relationships, which have been obtained from analytical solutions (Jeng and Huang, 2008). (a) Type A

fold-form comprises two frequencies, which can be yielded when 3x
B> 3x

cr. (b) Type B fold-form is a single frequency-wave with a constant amplitude over the full length of the
competent layer (when 3B ¼ 3x

cr). (c) Type C fold-form is a single frequency-wave characterized by an amplitude attenuation away from the perturbed end (when 3B< 3x
cr).
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structural evolution of the fold? Will the fold-form change in
the post-buckling stage? Lastly, the folding behavior of lower
competence contrast (R� 50) will be explored.

2. Setup of numerical analysis

This work uses a finite element code, ABAQUS, to simulate the
fold-forms for the six possible models, and the results are
compared to the theoretical solutions listed in Table 1.

2.1. Material models

For a pure elastic material, the conventional isotropic, linear
elastic model is selected. The constitutive relation for such material
is defined as:

sij ¼ l3kkdij þ G3ij (1)

where: sij is stress tensor; 3ij is strain tensor; 3kk is volume strain; dij
is the Kronecker delta; l and G (¼m) are Lamé constants; G is shear
modulus or modulus of rigidity. For isotropic, elastic material, l can
be expressed in terms of E and n as l ¼ n/((1þ n)(1�2n)) E¼ (2n/
1�2n)G, where E and n are Young’s modulus and Poisson’s ratio. If
the Poisson’s ratios assigned for the layer and the matrix are
different, they can affect folding behavior of the layerematrix
system. On the other hand, it can be shown that if they are the
same, then Poisson’s ratio will not affect folding behavior. For the
sake of convenience, as in previous research, the influence of
Poisson’s ratio is excluded by setting both the layer and the matrix
to have same Poisson’s ratio of 0.5.
Table 2
Conversion of the layerematrix system to other material models upon extreme
strain rates (Jeng and Huang, 2008).

Original type
of material
(layerematrix)

Converted material type Remarks

Very fast
strain rate

Very slow strain
rate

1 EeE EeE EeE Strain rate-independent
2 VeV VeV VeV
3 EVeEV EeE VeV Strain rate-dependent
4 EeEV EeE EeV (no matrix)
5 EVeV e VeV
6 EeV e No matrix
For pure viscous material, the stress is related to the strain rate
of viscous flow as:

sij ¼
�
p� 2

3
h_3kk

�
dij þ 2h_3ij (2)

where h is viscosity; p (¼sii/3) is hydrostatic stress; _3kk is volume
strain rate and _3ij is strain rate tensor. When the viscous material is
incompressible, so that there will be no volume strain rate
(_3kk ¼ 0), Eq. (2) can be reduced to sij ¼ pdij þ 2h_3ij, which is called
Newtonian flow.

For the elasto-viscous material, a Maxwell model is adopted,
and the stress is comprised of rate-independent elastic component
and rate-dependent viscous component as:

_3ij ¼
sij
2h

þ
_sij
2G

(3)

In order to compare the results of numerical analyses of
this work with other published works, all the elastic, viscous and
elasto-viscous models are set to be incompressible for convenience.
As a result, Eq. (3) can be reduced to _3ij ¼ ðs0ij=2hÞ þ ð _s0ij=2GÞ, where
s0ijð¼ sij � pdijÞ is deviatoric stress tensor.

For geologically realistic conditions, based on the composition of
quartzefeldspar, the viscosity ratio seldom exceeds 20 (Hobbs et al.,
2008). However, there are several rock material compositions
which may give large values of competence contrast, ranging from
50 to 100, e.g. metapsammite and calcsilicate layers versus the
embedding marbles (Druguet et al., 2009). On the other hand,
Schmalholz and Podladchikov (2001a) proposed a method to esti-
mate strain and competence contrast from fold shape and verified
it by analogue and numerical experiment. The results show the
competence contrast ranges from 10 to 250. Overall, a compromise
ratio from 50 to 100 between the low and high competence
contrast can be usually used for fold analysis and numerical
modeling (Treagus and Fletcher, 2009).

The input parameters for the three types of materials (elastic,
viscous and elasto-viscous) are summarized in Table 3. The
competence contrast assigned for elastic layerematrix system is
RE¼ 100, which was often adopted in previous researches, so that
all the results can be compared on a similar basis. As to viscous
material, the competence contrast is set to be RV¼ 1000, since RV is
often much greater than RE in reality, and which value is also
adopted in many previous researches.



Table 3
Material properties used by numerical analyses.

Material
model

Layer Matrix

l (Pa) m (Pa) h (Pa s) lo (Pa) mo (Pa) ho (Pa s)

Elastic 1� 1015 1� 1012 1� 1013 1� 1010

Viscoelastic 1� 1015 1� 1012 1� 1020 1� 1013 1� 1010 1� 1017

Viscous 1� 1020 1� 1017

Remarks:
1. Herein, with and without the subscript “o” represent the properties of competent
layer and matrix, respectively.
2. l, m and lo, moare Lamé constant of competent layer andmatrix, respectively. h and
ho are viscosity.
3. For isotropic elastic material, l¼ (2n/1� 2n)G, where n is Poisson’s ratio. Similarly,
m ¼ G, where G is shear modulus.
4. In this table, competence ratios for elastic and viscous materials are respectively
set to be: RE ¼ m/mo(¼l/lo) ¼ 100; RV ¼ (h/ho) ¼ 1000.
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2.2. Numerical models

The geometry of themodel and boundary constraints are similar
to those adopted by previous research (Zhang et al., 1996, 2000;
Mancktelow, 1999; Jeng et al., 2002), so as to allow direct compar-
isons. The competent layer has a length of 210 h, where h is the
thickness of the layer, as depicted in Fig. 2. The matrix has a thick-
ness of 70 h on both sides of the layer and a “roller” constraint (free
slip in horizontal direction and no vertical displacement) is imposed
along the right and the lower boundaries of the model.

If a perfectly straight layer without any perturbation is
compressed, the layer is shortened without buckling. A perturba-
tion is therefore required to induce folding in a numerical analysis
and some initial geometric configurations different from a perfect-
straight layer were generally adopted for this purpose (Zhang et al.,
1996, 2000;Mancktelow,1999, 2001; Jeng et al., 2002). The adopted
perturbation, the end-rotational method, involves the imposition of
a boundary rotationwith an angle q, small in magnitude, at one end
of the layer, as illustrated in Fig. 2. By employing this end-rotation,
the shortened layer is applied a very small moment, which accounts
for the subsequent buckle-folding. The rotation angle is small
enough not to affect the yielding fold-forms. A typical range of
rotation (q) is about 5�10�1e5�10�3 degree, within which range
Fig. 2. Schematic illustration of end-rotation method adopted in numerical simulation. Th
displacement, with a rotation angle q. For EeE model, an initial shortening (di) was appli
perturbation takes place. After end-rotation is applied, further lateral compression is then
perturbation is applied before the beginning of analysis (Step 0), then the system is compr
Further shortening is applied (Step 2), subsequently.
the bending cannot influence the development of waveforms and
identical waveforms can be obtained.

For an elasticmaterial, taking compression of a layer for example,
stress will remain in a deformed system at the end of every step if
external load is still applied on the boundary yet the boundary is not
moving. However, for a viscous material, deviatoric stress will
disappear at the end of a loading step, if the applied strain rate cannot
bemaintained to be non-zero at the end of step. Then compression of
layer cannot cause buckling. Therefore, when the perturbation
method is employed on the viscous system, minor modification to
the applying procedures is made. The perturbationwill be applied to
the boundary at the beginning of the analysis, the system is then
shortened to the pre-specified strain in one increment within the
first step, and finally the system buckles, owing to this shortening
and boundary perturbation, in later increments and steps.

3. Fold-forms at the moment of buckling

The fold-forms generated by the six layerematrix system
studied, are presented according to whether they are independent
or dependent of strain rate of lateral compression.

3.1. Strain rate-independent cases (EeE, VeV)

3.1.1. EeE model
Since deformation of the elastic material is rate-independent,

the fold-form is therefore rate-independent as (Currie et al., 1962;
Jeng and Huang, 2008):

3Bx ¼ p2

3l2
þ Eol
2pE

(4)

where l is a normalized, dimensionless wavelength (¼L/h);
E ¼ E=1� n2 and Eo ¼ Eo=1� n2o are the equivalent Young’s
modulus of the layer and the matrix under a plane strain condition,
respectively. For symbols and definitions of the theoretical
solutions in Table 1, please refer to Jeng and Huang (2008).

Numerical analyses also confirm this rate-independent nature.
As shown in Fig. 3, depending on the lateral compression when
buckling occurs (3xB), all the three types of fold-form can be
e perturbation is applied at the end of the competent layer by imposing a boundary
ed prior to end-rotation (Step 1), which accounts for the lateral compression before
applied (Step 3) to trigger buckling of the layerematrix system. For VeV model, the
essed to the initial shortening in one increment within the Step 1 to induce buckling.



a 

b 

Fig. 3. The fold-forms obtained from the EeE model. The wavelengths l1, l2, ld and l3 are defined and illustrated in Fig. 1. The symbol 3x is the amount of compression applied on the
lateral boundaries. The theoretical solutions are indicated by the solid curves shown in Part (a). The wavelengths from numerical analyses are indicated by the symbols in Part (a),
with corresponding fold-forms shown in Part (b). The input parameters are listed in Table 3. For this EeE model, RE¼ 100. The symbol d denotes the magnification factor in y-
direction for individual fold-form. The notation will also be adopted for rest of figures in this paper.
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engendered. The resulting types of fold-form and the correspond-
ing wavelengths are consistent with the predictions of theoretical
solutions, as compared in Fig. 3a. Remarkably, upon a small amount
of compression in the subsequent post-buckling stage, the Type C
fold-form soon becomes Type B fold-form as shown by Case 3 of
Fig. 3b.

3.1.2. VeV model
Deformation of the viscous material is rate-dependent;

however, the resulting fold-form is rate-independent as (Jeng and
Huang, 2008):

3Bx ¼ p2

3l2
þ hol
2hp

(5)

where h and ho are the viscosity of the layer and the matrix,
respectively.
This rate-independent nature is confirmed by numerical
analysis. Two extreme strain rates have been applied (1�10�1 and
1�10�15s�1) and exactly same fold-forms are obtained. Similarly,
depending on the lateral compression when buckling occurs (3xB),
three types of fold-form can be generated as shown in Fig. 4. The
resulting types of fold-forms and the corresponding wavelengths
are consistent with the prediction of theoretical solutions, as
compared in Fig. 4a.

The Type C fold-form maintains its form during subsequent
lateral compression in post-buckling stage; this folding behavior
somewhat differs from that of EeE model, changing from Type C to
Type B, as above-mentioned.

3.1.3. Competency contrast R
The folding behavior of strain rate-independent cases (EeE, VeV

models) depend on the competence contrast R value and the



a 

b 

Fig. 4. The fold-forms obtained from the VeVmodel. The theoretical solutions are indicated by the curves shown in Part (a). The wavelengths from numerical analyses are indicated
by the symbols in Part (a), with corresponding fold-forms shown in Part (b). The input parameters are listed in Table 3. For this VeVmodel, RV¼ 1000. The magnification factor (d) is
1 for all fold-forms in this figure.
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shortening strain while buckling. The fold-forms of EeE and VeV
models, as indicated in Eqs. (4) and (5), can be expressed by
a general form as:

3Bx ¼ p2

3l2
þ l
2Rp

(6)

where R represents the competence contrast of the system. For the
EeEmodel, R ¼ RE ¼ E=Eo and for the VeVmodel, R¼ RV ¼ h/ho. If
there is no matrix, or equivalently R is approaching infinity, the
term l/2Rp vanishes and the fold-formwill solely be determined by
the term p2/3l2. Therefore, the term p2/3l2 represents the system
without matrix and is referred as “no matrix”. On the other hand,
the term l/2Rp represents the contribution of matrix to the
formation of fold-form, and is referred as “matrix”. These two terms
are plotted in Figs. 3a and 4a.

Overall, the theoretical solutions indicate that, for rate-inde-
pendent models, the resulting fold-forms only depend on R and 3x

B,
and the results of numerical analyses as shown in Figs. 3 and 4
confirm this prediction.
For higher competence contrast (R� 100), the numerical
simulations agreed well with the theoretical solutions. At the same
time, some previous researches pointed out that if the competence
contrast is smaller than about 50 or even close to 10, then the
thin-plate solution does not provide a good approximation and
thick-plate solutions have to be used (Fletcher, 1974; Smith, 1975,
1977, 1979; Mühlhaus et al., 1994). Moreover, non-equilibrium
thermodynamics has been used to obtain the fold-forms especially
for low competence contrast situations (Hobbs et al., 2008).
Therefore, this research also explored for what extent of compe-
tence ratio R the analytical one-dimension solutions are still valid.
The competence contrast value of 50, 20 and 10 was adopted,
respectively, and Type A and Type B fold-forms were numerical
analyzed in the EeE model, and the results are shown in Fig. 5.
Obviously, the numerical analysis results of Type A fold-form agree
well with the theoretical solutions at high frequency. However,
there is increasing inaccuracy at lower frequency as competence
contrast R decreases. On the other hand, the numerical analysis
results of Type B fold-form still agree well with the theoretical
solutions. Overall, the numerical analyses show that, even with



Fig. 5. The fold-forms of lower competence contrast obtained from the EeE model. The theoretical solutions are indicated by the curves shown in Part (a). The wavelengths from
numerical analyses are indicated by the symbols in Part (a), with corresponding fold-forms shown in Part (b). The competence contrast values 50, 20 and 10 are adopted
respectively. The magnification factor (d) is 1 for all fold-forms in this figure.

K.-P. Huang et al. / Journal of Structural Geology 32 (2010) 960e974966
lower competence ratio, to some extent the analytical thin-plate
one-dimension solutions are still valid.

3.2. Strain rate-dependent cases

3.2.1. EVeEV model
The fold-form of EVeEV model is related to strain rate as (Jeng

and Huang, 2008):
B p2 h+l
�
1� e�

T
TRo

�

3x ¼

3l2
þ
2hp

�
1� e�

T
TR

� (7)

where TR and TRo are the relaxation time of the layer and thematrix,
and are defined as TR ¼ h/G and TRo ¼ ho/Go, respectively.

When the strain rate is very fast, the folding behavior will
convert to EeE model as:
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3Bx ¼ lim
T/0

p2

3l2
þ

l
�
1� e�

T
TRo

�

2RVp
�
1� e�

RE
RV

T
TRo

� ¼ p2

3l2
þ l
2REp

(8)

When the strain rate is very slow, the folding behavior will
convert to VeV model as:
a 

b 

Fig. 6. The fold-forms obtained from the EVeEV model. Cases 1e3 are obtained using ve
rate, _3x ¼ 1� 10�15s�1. The solid curves with dark and light colors and are theoretical solu
fold-forms in this figure.
3Bx ¼ lim
T/N

p2

3l2
þ

l
�
1� e�

T
TRo

�

2RVp
�
1� e�

RE
RV

T
TRo

� ¼ p2

3l2
þ l
2RVp

(9)

In order to distinguish the influence of RE and RV, these two
competence contrasts are deliberately set to be 100 and 1000, as
summarized in Table 3.
ry fast strain rate, _3x ¼ 1� 10�1s�1. Cases 4e6 are obtained using very slow strain
tions of the EeE and VeV models, respectively. The magnification factor (d) is 1 for all



Fig. 7. The fold-forms of the EVeEV model with RE¼ RV¼ 1000. Strain rates for Case 1 and Case 2 are 1�10�1 and 1�10�16 s�1, respectively. The magnification factor (d) is 1 for all
fold-forms in this figure.

a

The B
x l  relationship for E-EV model 

Case #  Type of fold-form Resulted wavelength and fold-form 

Case 1 
10%x

 Type A l1 = 8.75   l2 = 46.67   d = 1 

Case 2 
10%x

 Type B ld = 16.8    d = 1 

Case 3 
4%x

 Type C l3 = 17.5    d = 5 

Case 3 
10%x

Type C l3 = 17.5    d = 1 

Case 4 
10%x

91 10x
l3 = 17.8    d = 1 

Case 5 
10%x

101 10x
ld = 23    d = 1 

Case 6 
2%x

111 10x
l3 = 36.7    d = 1 

Case 7 
0.4%x

121 10x
ld = 43.8    d = 1 

b

The resulted fold-forms of each case 

0%

2%

4%

6%

8%

0 10 20 30 40 50 60

l

E-EV 

B
x

RE = 100

No matrix

1RoT T

5RoT T

10RoT T

Case 1

Case 2

Case 3 Case 4

Case 5

Case 7
Case 6

Fig. 8. The fold-forms of the EeEV model. Cases 1e3 are obtained with very fast strain rate, _3x ¼ 1� 10�1s�1. The strain rates for Cases 4e7 are 1�10�9, 1�10�10, 1�10�11,
1�10�12 s�1, respectively. The magnification factor (d) is 1 for all fold-forms in this figure. TRo ¼ (ho/Go) ¼ 1�107 s for this case.
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Fig. 9. The fold-forms of the EVeV model. Cases 1e3 are obtained with very slow strain rate, _3x ¼ 1� 10�15 s�1 . The strain rates for Cases 4e7 are 1�10�9, 1�10�10, 1�10�11,
1�10�12 s�1, respectively. The magnification factor (d) is 1 for all fold-forms in this figure. TR ¼ (h/G) ¼ 1�108 s for this case.
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The numerical analyses results confirm the folding behavior of
EVeEV model under extreme strain rates, as shown in Fig. 6. Under
extreme fast strain rate, the resulting wavelengths compared well
with the theoretical solutions of EeE model, marked as the square
symbols shown in Fig. 6a. On the other hand, under extreme slow
strain rate, the resulted wavelengths match the predictions of VeV
model, marked as the circular symbols shown in Fig. 6a. The three
types of fold-forms can be generated depending on the applied
strain rate and 3x

B.
In the special case, RE¼ RV, the resulting fold-form will

convert from Eqs. (8) and (9) to Eq. (6) so that the EVeEV model
becomes rate-independent. The numerical results confirm this
particular behavior as shown in Fig. 7. As RE¼ RV¼ 1000, the
same fold-forms are obtained by two strain rates significantly
differing with each other with the order of 15, as shown in Fig. 7.
In these two cases, both Type B fold-forms with same
wavelength are obtained, except that the amplification of
fold-amplitude of VeV model is somewhat smaller in the later
post-buckling stage. It should be noted that the theoretical
solutions focus on the moment of buckling but may not neces-
sarily be applicable to the folding behavior in the subsequent
post-buckling stage.



a 

b 

Fig. 10. The fold-forms of the EeVmodel. The strain rates for Cases 1e4 are 1�10�9, 1�10�10, 1�10�11, 1�10�12 s�1, respectively. The magnification factor (d) is 1 for all fold-forms
in this figure. ðTRÞE�V ¼ ho=G, G ¼ G=1� n, and (TR)EeV¼ 5�104 s.
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This validation provides an important message, that in order to
explore the impact of the strain rate to EVeEV system, one must set
different competence contrast to elastic and viscous properties (i.e.
RE s RV).

3.2.2. EeEV model
On the basis of theoretical solution, the EeEV model converts to

the EeEmodel as strain rate is very fast. Numerical results as shown
in Fig. 8 confirm this behavior. As shown by Cases 1e3 in Fig. 8, the
resulting fold-forms (type and wavelength) compare with of the
corresponding EeEmodel, in which all three types of fold-form are
possible.

When the applied strain is not very fast, the applied strain rates
can affect the fold-forms, as shown by Cases 4e7 in Fig. 8.
Remarkably, for Cases 4e7, only Type C fold-form is obtained. The
end-perturbation which is employed at the beginning of lateral
compression may account for the early occurrence of folding
(earlier than Type B fold-form) so that Type C fold is obtained. When
the applied strain rate becomes slower, the resulting fold-form gets
closer to the “no matrix” curve, as shown in Fig. 8.
3.2.3. EVeV model
On the basis of theoretical solution, the EVeVmodel converts to

the VeV model as strain rate is very slow. Numerical results as
shown in Fig. 9 confirm this behavior. As shown by Cases 1e3 in
Fig. 9, the resulting fold-forms (type and wavelength) compare
with of the corresponding VeV model, in which all three types of
fold-form are possible.

When the applied strain is not very slow, the applied strain rates
can affect the fold-forms, as shown by Cases 4e7 in Fig. 9. Similarly,
for Cases 4e7, only Type C fold-form is obtained. The end-pertur-
bation which is employed at the beginning of lateral compression
may account for the early folding (earlier than Type B fold-form) so
that Type C fold is accordingly obtained. When the applied strain
rate becomes slower, the resulting fold-form gets closer to the VeV
curve, as shown in Fig. 9.

3.2.4. EeV model
The results of numerical simulations indicate that the fold-

forms of the EeV model are affected by the applied strain rates, as
shown in Fig. 10. This strain rate-dependent nature of the EeV
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model agrees with the theoretical predictions by Jeng and Huang
(2008), yet differs from the rate-independent prediction by Biot
(1961). This phenomenon is also discussed in a different way in
previous research (Hunt et al., 1996a; Schmalholz and
Podladchikov, 1999). Similarly, for Cases 1e4, only Type C fold-
form is obtained due to the end-perturbation which is employed at
the beginning lateral compression. When the applied strain rate
becomes slower, the resulting fold-form gets closer to the “no
matrix” curve, as shown in Fig. 10.

3.2.5. Summary
The four models studied in this section are rate-dependent in

general, except in the situation that the effect of strain rate is
compensated by letting RE¼ RV in the EVeEV model. Overall, the
resulting fold-forms agree well with the theoretical predictions,
including rate-dependency, type of fold-form and wavelength.

All three types of fold-form can be generated, as long as the
applied strain rate approaches the boundaries of the EeE or VeV
models. On the other hand, when the VeV model is not the lower
boundary of fold-forms, the “no matrix” curve becomes the
lower boundary of the fold-forms. In such a situation, Type C will
often be generated, which can possibly be accounted for by the
fact that the end-perturbation is employed right at the beginning
of lateral compression. Meanwhile, a slower strain rate will bring
the fold-form closer to the one dominated by the “no matrix”
curve.

It is hard to estimate geological conditions by the fold formation.
Even though the material properties of layer and matrix can be
known, still one cannot estimate strain rate and shortening strain
while buckling. Due to this analysis, nevertheless, how the strain
rate and shortening strain while buckling affects the fold-form
generation can be preliminarily understood.
Fig. 11. Variation of Type A fold-form during post-buckling deformation of elastic folding (Ee
for the two cases are 6.0% and 1.38%, respectively. The symbols, l1 and l2, are the wavelength
4. Folding behavior in the post-buckle stage

The subsequent deformation of fold in the post-buckling stage is
beyond the ability of the proposed theoretical solutions. A dimen-
sionless measure based on relaxation time of the layerematrix
system has been proposed to indicate whether the strain rate is fast
or slow (Jeng and Huang, 2008). Since numerical simulations are
able to yield results agreeing well with theoretical solutions at the
buckling stage, the validity of both theoretical solutions and
numerical simulation adopted in this research seems to be well
supported. Therefore, the folding behavior in post-buckling stage is
further studied by observing the folding behavior revealed by
numerical simulation.

Systematic study on the post-buckling behavior of all six models
has been conducted. It was found that the post-buckling behavior
of the EeE and VeV models are most representative; as to other
four models, their behaviors range within the behaviors of these
two models in most cases, except for Type C fold-forms. Therefore,
the post-buckling behavior of the EeE and VeV models for three
types of fold-forms are presented first. The variations of Type C fold-
forms obtained from the other four models are then presented.

4.1. Elastic folding versus viscous folding

Although these twomodels share samegeneral fold-form (Eq. (6))
at the buckling stage, discrepancies exit in their post-buckling
behavior.

4.1.1. Type A fold-form
For dual-frequency fold-form (Type A), the process of post-

buckling deformation yielded by elastic folding (EeE, EeEV, EVeEV
models) is shown in Fig. 11. A dual-frequency fold-form is initiated
E model). The RE for the cases in Parts (a) and (b) are 100 and 1000, respectively. The 3x
B

s right after buckling. The magnification factor (d) is 1 for all fold-forms in this figure.
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at the moment of buckling, yet the magnitude is often rather small,
as shown in Step 1 of Fig. 11a, so that it cannot be recognized if the
amplitude is not magnified. Using fast Fourier transform (FFT), the
dual wavelengths can be revealed as shown in Fig. 12a. Although,
the amplitudes of these two frequencies are not clearly visible (Step
1 in Fig. 11a), the result of FFT, in which frequency has been
converted into wavelength for convenience, clearly indicates the
existence of two frequencies, as shown in Fig. 12a. Remarkably, by
observing the relative amplitudes of the dual-frequency fold-form,
it is found that the higher frequency (l1) has much greater
amplitude than the lower frequency (l2).

While continuing compression shortly after buckling, the
amplitude of the higher frequency (l1) in the dual-frequency fold-
form is first amplified, as shown in Step 2 of Fig. 11a. Next the
amplitude of the lower frequency (l2) is then amplified, as shown in
Step 3. Finally, when the amplitude of the lower frequency becomes
much larger than that of higher frequency, the amplitude of the
fold-form of the higher frequency seems to be stretched down by
the fold-form of the lower frequency, and somewhat diminishes, as
shown in Step 4 in Fig. 11a. As shown in Fig. 12b, fast Fourier
transform of the fold-form (in Step 4) indicates that the amplitude
of l2 becomes much greater than that of l1. It is noticeable that, as
revealed by numerical simulation, the relative amplitude of the
dual-frequencies can be significantly changed during the process of
Fig. 12. Fast Fourier transform of fold-forms shown in Fig. 11a. Parts (a) and (b)
correspond to Step 1 and Step 4 in Fig. 11a, respectively. Frequencies have been
converted to wavelengths for convenience. The original result of FFT is also attached in
the each figure.
folding. A further study regarding how and why these frequencies
are changed is needed to perceive the underlain mechanism. A
similar post-buckling deformation can be observed for RE¼ 100
(Fig. 11a) and RE¼ 1000 (Fig. 11b).

For viscous folding (EVeEV, EVeV, VeV models), dual-frequency
occurs at the moment of buckling although it is not readily visible
without magnification, as shown in Step 1 of Fig. 13a. The amplifi-
cation of high frequency occurs first, just as the EeE model, as
shown in Step 2 of Fig. 13a. Nevertheless, the later amplified lower
frequency does not markedly stretch the higher frequency fold-
form, so that both of the dual-frequencies remain in the later stages
of deformation, as shown in Fig. 13a. A similar post-buckling
deformation can be obtained for 3xB¼ 1.0% (Fig. 13a) and 3x

B¼ 1.38%
(Fig. 13b). Remarkably, as shown in Fig. 13b, the severe distortion of
the fold near the left-end at the final step of deformation is possibly
caused by the local initial end-perturbation applied on the left-end.

The dual-frequency fold-form is similar to the two order folds,
interpreted by Price and Cosgrove (1990). The amplifying process of
the higher frequency and the lower frequency fold-forms is very
similar to the interpretation of the first order and the second order
folds by Price and Cosgrove (1990). The only difference is that the
dual-frequency fold-form has been triggered simultaneously at the
moment of buckling, as revealed by theoretical solutions (Jeng and
Huang, 2008) and numerical simulation of this research. To clarify
why the higher frequency is first amplified, a further study is
required. On the other hand, to confirm this phenomenon in
outcrop is hard. Both the single frequency fold-form and dual-
frequency fold-form can be found in outcrop; supporting the
proposition of Price and Cosgrove (1990); nevertheless, they seem
not to negate the observation of this research.

4.1.2. Type B fold-form
If Type B fold-form is formed at buckling, the subsequent lateral

compression seems only to shorten the wavelength and magnify
the amplitude, without changing the type of fold-form, for both
elastic folding (EeE, EeEV, EVeEV models) and viscous folding
(EVeEV, EVeV, VeV models). Furthermore, the second order fold is
not observed in later stages of post-buckling deformation. As far as
revealed by numerical analyses, the second order fold can occur
only when dual-frequency fold is formed at the moment of
buckling.

4.1.3. Type C fold-form
Type C fold-form yielded by elastic folding (EeE, EeEV, EVeEV

models) swiftly changes to similar Type B in post-buckling stage, as
shown in Case 3 of Fig. 4. Yet, for viscous folding (EVeEV, EVeV, VeV
models), the amplitude of Type C fold-form is sequentially magni-
fied from the perturbed end toward the decaying end in a relatively
slower manner. Upon significant amount of post-buckling defor-
mation, the original Type C fold-form of viscous folding becomes
closer to Type B fold-form. Overall, Type C fold-form of viscous
folding (EVeEV, EVeV, VeV models), together with the EeEV and
EeVmodels under very slow strain rates, can exist for a rather long
period during post-buckling deformation. This phenomenon
implies that the Type C fold-form observed in outcrop should be
formed and subsequently deformed within a rather “viscous”
environment, or under a rather slow strain rate.

4.2. Variation of Type C fold-forms yielded by other models

For the models (EVeEV and EVeV) which have the VeVmodel as
their lower bound upon very slow strain rate, the variations of Type
C fold-form in post-buckling stage are quite similar to those of the
VeV model: the amplitude of Type C fold-form is sequentially
magnified from the perturbed end toward the decaying end in



Fig. 13. Variation of Type A fold-form during post-buckling deformation of viscous folding (VeVmodel). The RV is 1000 for both cases. The 3x
B for the cases in Parts (a) and (b) are 1.0%

and 1.38%, respectively. The symbols, l1 and l2, are the wavelengths right after buckling. The magnification factor (d) is 1 for all fold-forms in this figure.
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a relatively slower manner. If medium strain rates are applied, it is
found that a slower strain leads to a greater wavelength of Type C
fold. If the strain rate is very slow, the folding behavior is then
controlled by the VeV model again.

For the models (EeEV and EeV) in which the no matrix curve,
instead of the VeV model, serves as the lower bound, the original
Type C fold-forms can be changed, both wavelength and amplitude
are unevenly and significantly changed within the layerematrix
system during the post-buckling stage. It is extremely difficult to
categorize the type of fold-forms.

5. Closing remarks

Numerical simulation can imitate the folding process. The
phenomena that the fold-forms predicted by theoretical solutions
and resulting from numerical analyses are in good agreement
indicate that: (1) in most ranges of contrast, the analytical solutions
are representative of two-dimensional buckle-folding; (2) the
simplified one-dimensional governing equations can keep the
characteristics of two-dimensional numerical simulation; (3) last
but not least, the validity and the performance of numerical
analysis itself seem to be also acceptable.

Beyond the capacity of those analytical solutions, designated
only for the moment of buckling, the post-buckling folding
behavior for elastic folding and viscous folding has been presented
based on numerical analyses. It can be seen that, in additional to the
shortening of original wavelength and amplifying of original
amplitude at buckling, the fold-form can be significantly altered in
some situations, as presented in previous sections.

It is wished to observe folding behavior at even greater degree of
lateral compression. However, too severe distortion of mesh would
prevent convergence of numerical computation so that some
simulations will be terminated at medium range of shortening
(40e60%), even less than 20% for elastic folding. More technology
for the numerical analysis should be employed in a further study to
achieve this purpose.
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